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The times between equipment failure in a 
renewal process are independent and identically 
distributed, that is, the times arise from a single 
population.  If the population distribution is 
exponential, the result is a homogeneous Poisson 
process (HPP).  However, a renewal process is not valid 
when the equipment reliability degrades or improves.  
We discuss some graphical and analytical tools for 
detecting trends in repairable systems.  In particular, the 
reverse arrangement test (RAT) is a simple but powerful 
statistical procedure to check for trends and randomness 
and thereby verify the validity of an assumed renewal 
process.  We provide an example application of the 
methodology to a case study in the semiconductor 
industry. 

  
Introduction 

The basic problem involves incorrect analysis 
of repairable system reliability data in which the 
application of techniques for the analysis of 
nonrepairable component data can lead to misleading 
conclusions.  To illustrate, we consider a case study on 
a repairable system.  The repair history showed failures 
at system ages 108, 178, 273, 408, 548, 658, 838, and 
988 hours.  The time to make the repair at each failure 
point is ignored.  The cumulative repair plot is shown 
below. 
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The engineers analyzed the repairable system 

data in a traditional manner (See Tobias and Trindade.) 
by taking times-between-repairs and treating them as a 
group of independent and identically distributed 
observations arising from a single population of failure 
times. Methods for the analysis of nonrepairable 
components were used including Weibull probability 
plotting of data, parameter estimation, and model 
fitting.  Thus, the times between repairs (called the 

interarrival times), that is, 108, 70, 95, 135, 140, 110, 
180, and 150 hours,  were sorted and plotted on Weibull 
probability paper. 

Since the plot showed reasonable fit to a 
straight line, the parameters of the Weibull distribution 
were estimated and used for assessing system 
performance. The shape parameter estimate was m = 
3.65 and the scale parameter, c, estimate was c = 137 
hours.  The graph below shows the Weibull model fit to 
the empirical distribution function (EDF) obtained by 
treating the data as a single population of failure times. 
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Because of the reasonable fit using the Weibull 

model, the engineers concluded that the repair times 
followed a Weibull distribution.  Also, the 
interpretation followed that the “failure rate” is 
increasing because the shape parameter, m, is greater 
than 1.0. Consequently, the equipment engineers 
thought the machine needed to be brought down for 
repair and maintenance.  We shall return to this case 
study later in this paper, but first, we develop some 
useful concepts. 
 
Repairable Systems Concepts 

A system is repairable if it can be restored to 
satisfactory operation by any action, including 
replacement of components, changes to adjustable 
settings, swapping of parts, or even a sharp blow with a 
hammer. Examples include TV’s, automobiles, and 
production equipment. 

There are important reliability considerations 
for repairable systems.  The failures occur sequentially 
in time. The times between failures may not be 
independent  and identically distributed (i.i.d.) 
observations from a single population, that is, a renewal 
process.  There may be stability, improvement, or 
degradation in the rate of repairs. The order in which 
failures occur is important. In contrast, for 
nonrepairable component analysis, the order of failures 
is ignored and times between failures are considered 
independent observations from a single population 



For repairable systems, there may be trends,  
indicating improvement or deterioration, which affect 
maintenance schedules, spare parts provisions, warranty 
costs, reliability growth objectives, etc.  Analysis may 
apply to either a single system, to understand behavior 
for possible reliability improvement of existing or 
future systems, or to many copies of the systems, to 
estimate the repair rate of a population of system or to 
specify burn-in effectiveness 
In this paper, we will concern ourselves with analysis of 
the single system. 

The times to repair are a function of many 
factors, including basic system design, operating 
conditions, type of repairs, quality of repairs, materials 
used, etc.  For a single component system, restoration to 
“like new,” such as replacement of the failed component 
with one from same population, implies a renewal 
process (i.i.d.).  However, even replacement with 
identical components is no guarantee of a renewal 
process! (See Usher.) If inter-repair times are not i.i.d., 
renewal model is not valid and special techniques for 
analysis are required.  In a renewal process, the times 
between failures are i.i.d. from a single population. 
There is no trend, that is, the repair rate is stable.  
Reliability analysis methods for non-repairable 
components have applicability. 
 
Analysis of Renewal Process 

Consider a single system for which the times to 
make repairs are ignored. Ten failures are reported at 
the system ages (in hours): 106, 132, 289, 309, 352, 
407, 523, 544, 611, 660.  The most common data graph 
is called the cumulative plot: the cumulative number of 
repairs is plotted against the system age.  For the data 
shown, the cumulative plot is: 
 

Figure 10.1 Cumulative Plot
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Under a renewal process, the times between failures are 
i.i.d., that is, from a single population having a fixed 
mean (average) repair time. Consequently, the 
cumulative plot should appear to follow a straight line. 
 
 

Analysis of  Interarrival Times 
Look at the times between repairs, called the interarrival 
times: 106, 26, 157, 20, 43, 55, 116, 21, 67, 49 hours.  
A useful chart is a plot of the interarrival times versus 
the system age at repair. 
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Interarrival Times Versus System Age 

 
If a renewal process exists, we can treat the 

sample of ten (assumed) independent observations (that 
is, the interarrival times) as arising from a single 
population.  We can analyze the data using methods for 
non-repairable components.  Thus, we can sort the data 
and plot on probability paper or use MLE methods. 

Suppose the interarrival times Xi are i.i.d. with 
exponential probability ddensity function (pdf) having 
failure rate λ.  A renewal process in which the 
interarrival distribution is exponential is called a 
homogeneous Poisson process (HPP). The expected 
value for N(t) is λt. The mean time to the kth repair is k 
/ λ. 
 
Graphical Analysis of Non-Renewal Processes 

Suppose the observed consecutive repairs 
times were 20, 41, 67, 110, 159, 214, 281, 503, 660 
hours. The cumulative plot is shown below. The 
curvature suggests a decreasing frequency of repairs, 
that is, an improving failure rate. 

Figure 10.4 Cumulative Plot - Improving
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The interarrival times are 20, 21, 26, 43, 49, 
55, 67, 106, 116, 157. These are exactly the same 
interarrival times as those for the renewal process! The 
plot of interarrival times versus system age is shown 
next. 
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Now the order in which the interarrival times appear is 
important.  Again we confirm an improving trend.  We 
cannot use standard non-repairable methods, such a 
probability plotting, to analyze such data by assuming 
the time between repairs are independent observations 
from a single population. 
 
Testing for Trends and Randomness 

Model assumptions should be verified.  We 
recommend a sequence of checks: Plot the data. Check 
for trend.  If confirmed, check for NHPP or other 
nonstationary models.  If no trend, check for identically 
distributed and independent. If i.i.d., we have a renewal 
process.  If i.d. and not independent, check for other 
model.  If not i.i.d.,  possibly subdivide data.  If 
renewal, check if exponential distribution for 
interarrival times holds, giving a HPP.  If not, another 
models applies or use distribution free methods.  
 
Analytical Tools to Check Trend 
Laplace Test is used to deterrmine whether or not an 
observed series of events is a HPP. The test statistic is 
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Reverse Arrangement Test (RAT) 

This is a nonparametric test (no distribution 
assumed).  Consider set of interarrival times occurring 
in the sequence  

X X Xn1 2, , ,   …  
Define a reversal as each instance of an earlier repair 
being smaller than subsequent times, that is,  

X Xi j<  

for i j i n j n< = − =, , , , , where  and 1 1 2… …  
As an example of counting reversals, consider 

a system with repairs at ages: 25, 175, 250, and 350 
hours. The interarrival times are 25, 150, 75, 100 hours. 
There are 3 reversals for the first time of repair 25, 
since that time is less than next three. There are zero 
reversals for the second time 150 which is larger than 
the next two.  There is one reversal for the time 75 
which is smaller than the last. Thus, the series of 
interarrival times has 3+0+1=4 reversals. 

The RAT criteria are: too many reversals 
indicate increasing trend; too few, consistent with 
decreasing trend.  Statistically, we can calculate, for n 
repair times, tables of critical values for a specific 
number of reversals (see Tobias and Trindade) to reject 
evidence of no trend in the data series and thereby 
conclude a trend does exist.  
 
Determining RAT Critical Values 
Consider n = 4 observations, designated  

X X X X1 2 3 4, , ,  
There are 4!=24 possible permutations. We can show 
that the maximum number of reversals for a series of n 
times is  n(n-1)/2. So for n = 4, we have a maximum of  
4(3)/2 = 6. By counting the number of reversals for 
each permutation, we can calculate the probability of 
zero to 6 reversals occurring by chance. For our n = 4 
example, the sequence 

X X X X1 2 3 4< < <  
is the only permutation with six reversals. There are 
only 3 permutations that give 1 reversal  
X X X X4 3 1 2 ,  X X X X3 4 2 1, and  X X X X4 2 3 1  

and so the probability of exactly 1 reversal is 3/24.  
Next, we can determine which permutations give 2 
reversals and so on. 
 
For n = 4, the probability of  0, 1, 2, 3, 4, 5, 6 reversals 
is 1/24,  3/24,  5/24,  6/24,  5/24,  3/24,  1/24, 
respectively.  Since 1/24 = 4.2%, we see that 0 or 6 
reversals is significant at the upper or lower 5% 
significance level. 

We can create tables of critical reversal 
numbers for different n.  See Tobias and Trindade. 
 
Case Study Example 

Recall the system experienced repairs at the 
following ages 108, 178, 273, 408, 548, 658, 838, 988. 
Is there any evidence of a trend? First, we check 
graphically. The interarrival times versus system age 
plot is shown below. 
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There appears to be a trend visible in the plot. 

How significant is it? We need a statistical approach 
that tells us the likelihood of such a pattern if there 
really is  no trend.  What is the probability of the 
observed sequence of repair times occurring by chance 
alone under a renewal process?  We apply RATS to the 
interarrival times, which are 108, 70, 95, 135, 140,110, 
180, 150. There are 5+6+5+3+2+2+0=23 reversals 
Comparison to the critical table shows 22 reversals in 8 
items is significant at the 5% level.  Hence, we  reject 
any renewal process, and in particular, the HPP, as a 
suitable model.  With at least 95% confidence, we state 
that the system is improving in time. 
 
Results/Implementation 

The correct analysis showed an improving 
trend in the repairable system history.  Incorrect 
analysis lead to the belief that maintenance was 
necessary to restore reliability when such action might 
have made the reliability worse.  By using correct 
procedures to detect the trend, the realization of the 
improvement was made and corrective action halted.  
Search for the source of the improvement was instead 
addressed leading to adoption of new techniques for 
repair. The result was improved reliability for the 
existing system and the prospect of improved reliability 
for future systems 
By not performing unnecessary maintenance 
considerable savings in money and cycle time was 
possible. Unnecessary repairs could have made the 
reliability worse. If correct techniques are not 
employed, reliability improvement could be missed. 
Engineers concluded that RAT is a simple test to apply., 
and graphical procedure are effective. 
 
Summary 

We have discussed various processes for 
repairable systems for both renewal and non-renewal 
situations. We have presented both graphical and 
analytical methods for revealing trends. We have 
reviewed a simple procedure called RAT for performing 
a nonparametric test for trend in repairable system data. 
Important to verify assumptions in reliability analysis of 

repairable systems.  Analysis of repairable systems with 
techniques for non-repairable components can be 
misleading and costly. Powerful graphical and 
analytical techniques exist for detecting trends in 
repairable system reliability.  
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